
3DS1 Integration

ActiveServer now supports 3DS1 authentication for SaaS clients. To integrate 3DS1

authentication with a merchant's or payment gateway's eCommerce site, the checkout process

of the eCommerce site needs to implement a 3DS1 challenge process which involves an API call

to the ActiveServer backend, and a page flow to host the challenge process initialised by the

ACS.

Summary of ActiveServer's 3DS1 authentication process

The steps below show how to execute a 3DS1 authentication:

The 3DS Requestor (or the merchant checkout process) determines whether a 3DS1

authentication is required.

The 3DS Requestor (or the merchant checkout process) calls ActiveServer 3DS1 Auth API

with a message

The 3DS Requestor redirects current checkout page to the challenge page that is returned by

the response in step 2

The challenge page executes ACS cardholder authentication process and returns the

authentication results via a POST form to the result notification URL that was provided by the

3DS Requestor in message in step 2.

The authentication result is available for the 3DS Requestor via the result notification URL.

The 3DS Requestor then processes the result accordingly.

3DS 1.0.2 only supported for GPayments SaaS product

3DS 1.0.2 integration is only supported for SaaS clients, and is not available for in-house deployments.



1.

2.

ThreeDS1AuthReq

3.

ThreeDS1AuthResp

4.

ThreeDS1AuthReq

5.

Auth API authentication

Please note the authentication for the 3DS1 Auth API calls uses the same merchant/masterAuth

certificate as the existing 3DS2 process, refer to Auth API Authentication for details of certificate usage.



3DS1 Integration

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

../../../../api_document_overview/#auth-api-authentication

Step 1: Determine 3DS1 authentication

Before executing a 3DS1 authentication process, users may want to check if 3DS1 authentication

is necessary or not. The 3DS Requestor can implement a static protocol routing process that

initiates a 3DS1 authentication process based on cardholder or merchant information, or utilise

ActiveServer's Enrol API to check if the PAN is enrolled with 3DS2 or not. 3DS Requestor can

proceed with 3DS1 authentication if the Enrol API call returns (Not Enrolled with 3DS2) if 3DS

authentication is required.

Step 2: Calling 3DS1 Auth API

There are 2 parts of the code for 3DS1 integration: a backend that initialises the Auth API call

and hosts a result notification page, and a frontend Javascript method that checks the Auth API

call response and redirects/hosts the ACS challenge page.

ActiveServer's 3DS1 integration supports the same languages and frameworks as the 3DS2

integration. Before proceeding with the 3DS1 integration, refer to Integration Introduction to

setup your local test environment with the provided demo requestor code and the language/

framework of your choice.

Before calling the 3DS1 Auth API, a proper client certificate is required to setup the mutual

authentication TLS communication with ActiveServer, refer to Backend Implementation v2 for

details.

The backend code snippet below shows how to make a call:

00

3DS 1.0.2 authentication determination

Whether a transaction should be authenticated by 3DS1 or 3DS2 is up to the 3DS Requestor

determination. The use of the Enrol API is not mandatory, it is provided as an option for determining

whether a 3DS1 authentication is required.



ThreeDS1AuthReq

Step 1: Determine 3DS1 authentication

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

https://docs.activeserver.cloud/en/api/auth/#/Auth%20API%20V2/ENROL_V2_1

Java PHP C# Go

//MainController3DS1.java
 @ResponseBody
 @PostMapping(value = "/3ds1/auth")
 public ThreeDS1AuthResp auth(@RequestBody ThreeDS1AuthReq req) {
 logger.info("3ds1 auth request received: {}", req);
 return threeDS1Service.handleAuthRequest(req);
 }

//ThreeDS1Service.java
 ThreeDS1AuthResp handleAuthRequest(ThreeDS1AuthReq request) {

 //generate the transaction id, this is optional.
 request.setThreeDSRequestorTransID(UUID.randomUUID().toString());

 logger.info("sending 3ds1 auth request to ActiveServer: {}", authUrl);

 HttpEntity<ThreeDS1AuthReq> httpRequest;
 if (config.isGroupAuth()) {
 HttpHeaders headers = new HttpHeaders();
 headers.add(AuthServiceV2.AS_MERCHANT_TOKEN_HEADER,
config.getMerchantToken());
 httpRequest = new HttpEntity<>(request, headers);
 } else {

 httpRequest = new HttpEntity<>(request);
 }

 ResponseEntity<ThreeDS1AuthResp> response = restTemplate
 .postForEntity(authUrl, httpRequest, ThreeDS1AuthResp.class);

 if (response.getStatusCode() == HttpStatus.OK) {

 ThreeDS1AuthResp body = response.getBody();
 logger.info("server returns ok, content: {}", body);

 return body;

 } else {
 ThreeDS1AuthResp body = response.getBody();
 logger.error("server returns error code: {}, content: {}",
response.getStatusCode(),
 body);
 return body;
 }

 }

Step 2: Calling 3DS1 Auth API

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

The above code shows the 3DS1 authentication API call is just forwarding the JSON request sent

by the frontend to the ActiveServer Auth API. The code that loads the mutual authenticated

HTTP client and processes the Master Auth Certificate are the same as the 3DS2 code, which is

not shown in this guide.

Prepare the Result Notification URL

When sending to ActiveServer, the 3DS Requestor (or the merchant site)

must provide a notification page to receive the authentication result from the Issuer ACS. The

ACS will post the result (CAVV, ECI etc) to this notification page once the cardholder submits the

challenge form.

The 3DS Requestor can process the result in the backend accordingly. For this guide, we simply

show the received authentication result on a result page.

As shown in the demo code, the result notification URL is , so the field

 in should be set as

.

The code snippet below shows how the is set on the demo page:

3DS Requestor API authentication

It is up to the 3DS Requestor implementation to handle its own API authentication with the frontend page

flows, and that part is out of scope here.



ThreeDS1AuthReq

Java PHP C# Go

//MainController3DS1.java
 @PostMapping("/3ds1/result")
 public String resultPage(Model model, @RequestBody MultiValueMap<String,
String> body) {
 logger.info("received result: {}", body);

 model.addAttribute("cavv", body.getFirst("cavv"));
 model.addAttribute("cavvAlgo", body.getFirst("cavvAlgo"));
 model.addAttribute("eci", body.getFirst("eci"));
 model.addAttribute("threeDSRequestorTransID",
body.getFirst("threeDSRequestorTransID"));
 return "3ds1/result";
 }

/3ds1/result

callbackUrl ThreeDS1AuthReq https://<the 3ds requestor base URL>/

3ds1/result

callbackUrl

Step 2: Calling 3DS1 Auth API

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

Step 3: Process the Auth API response and handle the ACS challenge page

During step 2, ActiveServer will process the authentication request with the Directory Server and

the ACS internally, and a response will be returned by ActiveServer if

everything goes well. Check the API document overview for the response details.

If in the response is not null, the response is considered as an error, the frontend (or

the backend, the actual implementation can be different on how to handle the errors) should

handle it as an error and guide the cardholder to retry or recover the authentication process.

If in the response is null, a field will be returned. This url is the Issuer

ACS' challenge flow page that should be presented to the cardholder who will be asked for a pre-

stored credential, or an OTP to verify themselves. The frontend code can redirect the current

page to this challenge url or use an iframe to load the challenge url in the browser. Once the

challenge page is loaded, and the cardholder submits the challenge form, the ACS will post the

result to the that was provided in the call in Step 2. 3DS

Requestor can process the authentication result and navigate the cardholder to the next stage in

the payment process once the is triggered.

The Javascript code below shows how to load the challenge url by redirecting the current page,

and a simple mechanism to show an error message when the returns an

error:

Java PHP C# Go

//MainController3DS1.java
 @GetMapping("/3ds1")
 public String paymentPage(Model model) {
 model.addAttribute("authUrl", config.getAsAuthUrl());
 model.addAttribute("callbackUrl", config.getBaseUrl() + "/3ds1/result");

 logger.info("3ds1 auth page called");
 return "3ds1/auth";
 }

ThreeDS1AuthResp

errorCode

errorCode challengeUrl

callbackUrl ThreeDS1AuthReq

callbackUrl

ThreeDS1AuthReq

Step 3: Process the Auth API response and handle the ACS challenge page

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

https://draft.docs.activeserver.cloud/draft/FtYZCGV3TmCY0pnCzqiVpUy6pRAbCL/en/api/auth/#/Auth%20API%20V2/THREEDS_1_1

The Javascript snippet shows the challenge url is presented by setting

and the error will be displayed as a simple call.

Javascript

//3ds1/auth.html
<script src="/js/v2/3ds-web-adapter.js"></script>
<script>

 function handleResponse(response) {
 //use the challenge url returned from the response
 if (response.errorCode) {
 console.error("error response", _onError);
 alert("auth request returns error: \n\n" + JSON.stringify(response))
 } else {
 console.log("response:", response)
 window.location.href = response.challengeUrl; //show the challenge url on
current page
 }
 }

 function handleError(response) {
 console.error("error", response);
 alert("auth request returns error: \n\n" + JSON.stringify(response))
 }

 $("#btnAuth").click(function () {

 var authData = objectifyForm($("#authForm").serializeArray());
 console.log(authData);
 doPost("/3ds1/auth", authData, handleResponse, handleError);

 })

 function objectifyForm(formArray) {
 //serialize data function
 var returnArray = {};
 for (var i = 0; i < formArray.length; i++) {
 returnArray[formArray[i]['name']] = formArray[i]['value'];
 }
 return returnArray;
 }

</script>

window.location.href

alert()

Step 3: Process the Auth API response and handle the ACS challenge page

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

Step 4 & 5: Handle the result notifications

As already mentioned in Step 2, a result notification page must be provided for the

 call. Once the ACS finishes challenge flow, a POST form with authentication

results will be posted to the result notification page and this is where the results should be

processed by the 3DS Requestor backend.

cavv: Cardholder Authentication Verification Value. Required by some Visa regions as proof

of 3-D Secure authentication.

cavvAlgo: CAVV algorithm. Required by some Visa regions as proof of 3-D Secure

authentication.

eci: Determined by ActiveMerchant. Must be sent to the acquirer through the payment

gateway interface.

threeDSRequestorTransID: Transaction id for 3DS1. Used as a “XID” for EnrolReq.

txStatus: the PARes_TX_Status content as defined in the 3DS1 specification.

errorCode: The error code returned. will return “0” if there is no error.

errorMessage: The error message when errorCode is not “0”.

ThreeDS1AuthReq

Java PHP C# Go

//MainController3DS1.java
 @PostMapping("/3ds1/result")
 public String resultPage(Model model, @RequestBody MultiValueMap<String,
String> body) {
 logger.info("received result: {}", body);

 model.addAttribute("errorCode", body.getFirst("errorCode"));
 model.addAttribute("errorMessage", body.getFirst("errorMessage"));
 model.addAttribute("txStatus", body.getFirst("txStatus"));
 model.addAttribute("cavv", body.getFirst("cavv"));
 model.addAttribute("cavvAlgo", body.getFirst("cavvAlgo"));
 model.addAttribute("eci", body.getFirst("eci"));
 model.addAttribute("threeDSRequestorTransID",
body.getFirst("threeDSRequestorTransID"));
 return "3ds1/result";
 }

•

•

•

•

•

•

•

Step 4 & 5: Handle the result notifications

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

A Walkthrough of 3DS1.0 integration in the demo 3DS Requestor

Now you should be able to run your own 3DS1 requestor with ActiveServer, below are

screenshots of the 3DS1 authentication process via GPayments 3DS1 TestLab in the demo 3DS

Requestor, for your reference.

Submit the authentication request

The demo requestor uses a simple form to populate a request and send it as

an JSON message to the 3DS Requestor backend. The backend then forwards the request to

ActiveServer. Please note in the demo code, the auth request form is serialised as JSON data

first and then gets posted to the backend.

Challenge page is presented

Once the authentication request is sent to ActiveServer, 3DS1 protocol will be processed and the

ACS will return a challenge page that should be presented in the browser for the cardholder.

The screenshot below shows a GPayments TestLab ACS challenge page:

ThreeDS1AuthReq

A Walkthrough of 3DS1.0 integration in the demo 3DS Requestor

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

../../../../images/3ds1-1.png
../../../../images/3ds1-1.png

Show the result

Once the cardholder submits their secret on the challenge page, the ACS will verify the input and

return the authentication result by posting a form to the that was prepared and

provided in the initial . The demo 3DS Requestor simply shows the result as

below:

callbackUrl

ThreeDS1AuthReq

Show the result

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

../../../../images/3ds1-2.png
../../../../images/3ds1-2.png

What's next?

Check out the API Document and learn more about the authentication request/response of 3DS1 in

ActiveServer



Show the result

Copyright ©2019 GPayments Pty Ltd. All rights reserved. ActiveServer Ver: V2.0.16 | Document Ver: V2.0.16:1

../../../../images/3ds1-3.png
../../../../images/3ds1-3.png
https://draft.docs.activeserver.cloud/draft/FtYZCGV3TmCY0pnCzqiVpUy6pRAbCL/en/api/auth/#/Auth%20API%20V2/THREEDS_1_1

	3DS1 Integration
	Summary of ActiveServer's 3DS1 authentication process
	Step 1: Determine 3DS1 authentication
	Step 2: Calling 3DS1 Auth API
	Prepare the Result Notification URL

	Step 3: Process the Auth API response and handle the ACS challenge page
	Step 4 & 5: Handle the result notifications

	A Walkthrough of 3DS1.0 integration in the demo 3DS Requestor
	Submit the authentication request
	Challenge page is presented
	Show the result

